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Abstract-As it is known, the general equation for the coefficient of heat (or mass) transfer between a 
rough wall and a turbulent fluid flow can be derived with the aid of general dimensional and similarity 
~~iderations supplements with some additional physical arguments. The equation is specified here 
for the case of a wall covered with two-dimensional roughness in the form of widely spaced parallel 
ridges perpendicular to the stream direction. The constant coefficients of the derived equation are 
approximately estimated from the available data on mean temperature or concentration profiles in wall 
turbulent flows over two-dimensional roughness. The final results of the calculations agree satisfactorily 
with all of the experimental data on turbulent heat and mass transfer in pipes and channels with regularly 
repeated parallel roughness ridges and in boundary layers on plates with two-dimensional roughness 
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exponent in equation (7) for fi(Pr, h+); 
typical vertical size of the flow; 
C,, RePr and ch RePr, Nusselt numbers; 
distance between two-dimensional 
roughness ridges; 
RePr, P&let number; 
thermal or diffusion Prandtl number; 
U1 L/v or Ub D/v, Reynolds number; 
U1 X/K 
hou./v; 
(tw/p)ii2, friction vefocity; 
mean velocity; 
distance from leading edge of a plate in 
a boundary layer flow; 
coordinate measured normal to a wall. 

describing temperature or con~ntration 
variation within the roughness sublayer; 
constant in the velocity profile equation; 
skin friction coefficient; 
dimensionless heat- or mass-transfer 
coefficients (i.e. thermal or diffusion 
Stanton num~rs) based on maximum 
and bulk values, respectively; 
specific heat capacity at constant 
pressure (to be replaced by unity in case 
of mass transfer); 
constant in equations for B(Pr, h+); 
pipe diameter; 
mean height of roughness elements; 
roughness parameter; 
height of the equivalent sand roughness; 
“threshold value” of h+ ; 
heat or mass flux; 
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coefficient at the log~ithmic term in 

Greek symbols 

equations (3); 
constant terms in equations (3); 
B-i-ctlnh,; 
exponent in the equation for the function 
E&) in the nei~bourho~ of a wall with 
tw~imensional roughness; 
energy-loss thickness of a boundary 
layer ; 
viscous sublayer thickness; 
enthalpy thickness; 
(&-&)/(&-&J, correction factor for 
transition from ch to Cb; 
eddy (thermal or mass) diffusivity and 
eddy viscosity; 
dimensionless distance from a wall for 
outer region of a flow; 
h/L, dimensionless roughness height; 
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mean temperature or mean 
concentration; 
j,,,/cppua heat flux temperature (or mass 
flux concentration); 
kinematic viscosity; 
density; 
dimensionless parameters describing 
shape and area distribution of roughness 
elements; 
shear stress; 
universal functions; 
molecular di~usivity for heat or mass 
transfer. 

bulk quantities; 
calculated quantities; 
measured quantities; 
quantities for a completely rough wall; 
quantities for a smooth wall; 
wall quantities; 
dimensionless quantities; 
maximum or minimum quantities at 
.,: = L. 

INTRODUCTION 

THE FIRST investigations of heat and mass transfer 
between a rough wall and turbulent fluid flow were 
made more than tity years ago. During all these years 
plenty of valuable experimental and theoretical works 
have been devoted to the problem. The references to 
many of them can be found in recent monograph fl] 
and in other works cited in the present paper. Never- 
theless it is impossible to say at present that the 
problem of a turbulent heat and mass transfer at rough 
walls is completely solved. 

The present paper is devoted to derivation of corre- 
lations for turbulent heat and mass transfer at a wall 
covered with two-dimensional roughness. Namely, we 
consider roughness in the form of regularly repeated 
parallel ridge-like protrusions perpendicular to the 
stream direction. The analysis is developed in the 
frames of the general approach to the study of heat 
and mass transfer in wall flows at high enough Reynolds 
and P&let numbers proposed by Fortier [2,3] and 
the present authors [4-61. The approach is essentially 
similar to Millikan’s [7] derivation of a skin-friction 
law for smooth- and rough-wall turbulent pipe and 
channel flows. It is based prosily on general dimen- 
sional and similarity arguments having a clear physical 
meaning. 

Let us assume that the rough wall is uniform, while 
the turbulent flow is steady and parallel (i.e. all mean 
fluid dynamic values depend only on the distance y 
from the wall, but not on the time t and coordinates 
x and z). The wall temperature (or wall concentration 
of the transported substance) 6, is assumed to be 
constant and different from the temperature (or con- 
centration) of the fluid. It is also assumed that 
v/x = Pr >, 1, i.e. we shall not consider heat transfer 
in rough-wall ffows of liquid metal (since at present 

there are no reliable experimental data on such heat 
transfer). 

Dimensional considerations imply that in a wall layer 
of the flow (i.e. at h < y CC L, where h is a protrusion 
height and f, is a typical vertical size of the flow, e.g. 
pipe radius, channel halfwidth, or boundary-layer 
thickness), the mean temperature profile? will satisfy 
the temperature wall law of the form 

O,-@(y) = @*rp(y+, Pr, h+,ar, (r2, . ..) (1) 

where 8, = jw/cpptlr is the so-called heat-flux tempera- 
ture, y+ = yu&, hi = ~1~~~ and al, c2, . . . , are dimen- 
sionless parameters characterizing the shape of rough- 
ness elements, their distribution over the wall surface 
and (in cases when not all of them are identical) the 
scatter of their dimensions and shapes. On the other 
hand, at y >> V/K and y >> h, i.e. in the core of the tube 
or channel tlow or in the outer part of the boundary- 
layer flow, the temperature defect law is valid, if the 
numbers Re = U1 L/v and Pe = U1 L/x = RePr are 
high enough. This law has the form 

O(y)--81 = @*V*(r/) (2) 

where B1 = O(L) and 9 = y/L. Let us also assume that 
the Reynolds and P&let numbers are so high that 
there is an overlap layer in which both the laws (1) 
and (2) apply simultaneously. Then the comparison of 
the two laws implies that both functions q(y+) and 
cpr(r]) must be logarithmic in the overlap layer: 

~(~+,Pr,~+,a,,~2 ,... )=rln~i+P(Pr,h+,al,az ,... ), 

v~(v)= -arlnq+Bi (3) 

(cf. Monin and Yaglom [S], Sections 5.5 and 5.7). If 
we now substitute (3) into (1) and (2) and then add the 
results, we shall obtain an expression for B,--@i lead- 
ing to the heat (or mass) transfer law of the form 

(Cf/2)1!2 

Ch=~ln[Re(cf/2)112]+~(Pr,h+,a,,ap,...)+~, 
(4) 

where ch = j,/c,plii(&-8i) is the heat- (or mass-) 
transfer coe&ient (Stanton number) and cf = ~(uJU,)~ 
is the skin-friction coefficient. When the vaiues of Re 

and cf are given, the corresponding ch can be evaluated 
with the aid of equation (4), if the values of the coef- 
ficients a, j3 and j?r are known. 

The numerical coefficients c[ and fir do not depend 
on the wall parameters, i.e. they are the same for all 
wall flows of the same type. The available data were 
discussed in [.X6] where the following recommen- 
dations were given: M Y 2.12 in all the cases, pt z 0.5 
for circular pipe and plane channel flows and /?r z 2.35 
for boundary-layer flows. The same values c( and b1 
are used in the present paper. Thus for the possibility 

tWe shall henceforth talk mostly about heat transfer and 
temperature field O(y). However, ah subsequent arguments 
can be applied to mass transfer if the meaning of 6,j, and x 
is changed accordingly and it is assumed that c, = 1. 

The values of 0 = O(y) in a wall-roughness sublayer of 
the thickness of the order of h are meant as area-mean 
values (i.e. mean values over the plane y = const). Similar 
meaning has the value j, of the wall flux. 
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to use equation (4) the value of B = fl(Pr, h.+, (ri,cz,. . .) 
must be estimated. This problem is more complicated 
than the estimation of a and /I1 and it will be considered 
in detail in the following section. 

L HEAT- AND Mu-~ANSFER LAW FOR 
TURBULENT FLOWS ALONG A WALL COVERED 

WITH TWO-DIMENSIONAL ROUGHNESS 

In the paper [5] devoted to heat and mass transfer 
in smooth-wall turbulent flows the equation 

p(Pr) = 12.5Pr2’3 + 2.12 In Pr-5.3 

was recommended for /I = #S(Pr) in a case when h+ = 0. 
This equation was derived by a simplified analysis of 
the behaviour of B(y) within the viscous sublayer 
and by the treatment of all the available data on mean 
temperature profiles in smooth-wall turbulent flows. 
Moreover the term 2.12 ln Pr was include only to fit 
thedatafor liquid metal flows (Pr << 1). Therefore in [6] 
a simpler smooth-wall equation for /?(Pr) was recom- 
mended at Pr & 1 (i.e. for all the cases with the exception 
of heat transfer in rough-wall flows of liquid metals), 
namely 

fi(Pr) = & = 12.5Pr2’3 - 6. (5) 

Equation (5) fits all the smooth-wall data at Pr b 0.6 
with the same accuracy as the equation for fl(Pr) 
recommended in [5]. However, no smooth-wall equa- 
tion for #l can be applied to a rough-wall case that 
requires a special study. 

Numerous data on turbulent heat and mass transfer 
at a wall with closely spaced three-dimensional rough- 
ness are analysed in [6]. It has been found that all of 
the data treated in [6] can be described with a satis- 
factory accuracy (which is somewhat less than that 
achieved in [S] for heat and mass transfer at smooth 
walls) by equation (4) where j? = &Pr, h,) is given by 
the single equation for all the considered types of 
roughness. In other words the results of [6] imply that 
the dependence of /I on the parameters crl, n2,. . . , 
describing specific features of the wall geometry, turns 
to be so weak, that it can be neglected in the first 
approximation when only the walls covered with 
closely spaced roughness elements are considered. For 
dynamically completely rough walls (i.e. at sufficiently 
large h+) the following equation is recommended in [6] : 

/3(Pr, h+) = fi, = 0.55h:12(PrZ/3 -0.2) 

-2.12lnh+ +9.5. (6) 

The general form of the equation was found by the 
consideration similar to those used in [5]. For transi- 
tional flows along dynamically slightly rough walls the 
linear interpolation between /?,(Pr,h+) and /3,(Pr) is 
suggested in [6]. 

The applicability of the same function ~(Pr,~+) 
independent of any additional parameters 61, Q, . . , , 
to many types of roughness implies that the single 
heat-transfer law can be used in the first approximation 
for a great variety of different rough walls. It is clear, 
however, that the law cannot be quite universal, i.e. it 
cannot be applicable to all existing types of roughness. 
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In particular it has already been pointed out in [6] 
that some of the regular deviations of the experimental 
points from the theoretical curves in the figures of this 
paper may be explained in some cases by the inaccuracy 
of the equation for fi as applied to specific types of 
roughness. Such a situation is quite probable, for 
example, in the case of Nunner’s experiments on heat 
transfer in pipes with the walls roughened by relatively 
sparse circumferential rings (heat-transfer data for such 
pipes showed especially poor agreement with theor- 
etical equations recommended in [6] f. It has also been 
pointed out in [6] that Webb et af.‘s [lo] data on 
heat transfer in pipes with repeated-rib roughness 
noticeably differ from the results following from (6). 
Let us also mention recent results of Garratt and Hicks 
[ll] who treated numerous data on heat (Pr = 0.71) 
and moisture (Pr = 0.62) transfer into the air from a 
large number of artificial and natural rough surfaces. 
They plotted a summary graph of the special dimen- 
sionless parsmeter B-’ (expressed through fi and 
roughness parameter ho) vs dimensionless combination 
Re, = houJv simply related to h, = huJv (the depen- 
dence of B- ’ on Pr was not considered in [ 1 l] since 
the data were rather crude and two values of Pr used 
differed but slightly). According to [ll] the parameter 
B-r (and hence j?) by no means can be presented at 
fixed Pr as a single-valued function of Re. (i.e. of h+). 
Namely, at large Re. the values of B-’ for surfaces 
with two-dimensional roughness (i.e. regularly repeated 
parallel rows of protrusions) essentially differ from B- ’ 
in case of more irregular and dense thr~~imension~ 
roughness. All this shows, that in cases of “two- 
dimensional roughness” we cannot use equation (6) 
that was suggested in [6] for a wall with closely spaced 
roughness elements. Hence the problem of the deter- 
mination of /I for a wall with two~imensional rough- 
ness requires a special study. 

It is natural to expect that the sparse twodimen- 
sional roughness in the form of repeated parallel ridges 
leads to weaker deterioration of turbulent transfer in 
the gaps between protrusions, than closely spaced 
threedimensional roughness with the same value of h+. 
It is suggested in [6] that the thermal eddy di~usivity 
.sH(y) in the gaps between closely spaced three-dimen- 
sional protrusions can be described by the equation 
Ed = atvh;3/2y$ where ah does not depend on h+ and 
y+. If this suggestion is correct, then it is reasonable 
to assume that in cases of two-dimensional roughness 
whose ridges do not contact with one another (but let 
us say, follow each other at a prescribed distance p), 
the thermal eddy diffusivity Q,(Y) near the wall in the 
gaps between the ridges, averaged over the whole area 
of these gaps, may be described by the equation 
Ed = af vh; ‘y? where 0 < y < 3/2. (Let us remind 
that the equation of the form E&J) = aflvy: with y = 0 
describes the smooth-wall case where there are no 
protrusions at all.) It can easily be seen that if 
E&J) - E&J) * hY+y: then the thickness 6, of the 
viscous sublayer is given by the equation 6, _ (v/uJhy13 
where 6, is determined by the usual condition that 
Re, = S,U(S,)/v is of the order of unity and, clearly, 
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0 < y/3 < l/2. By repeating all the arguments of [6] 
(and, in particular, by assuming again that above the 
level y = S, the variation of the mean temperature is 
approximately proportional to the variation of the 

mean velocity), but by using the new values of the eddy 
diffusivity Q,(Y) and of the thickness 6,,, we arrive at 
the relation of the form 

fl(Pr, h+) = ,1;“hk+(Pr2:3+h’;)-rInh+ +C’ (7) 

where h; > 0, and k = ;)/3 (i.e. 0 < k < l/2). If we now 

substitute this result into (4) we find that 

Ch = 
(CJLV” 

cclnL/h+h~h4(Pr2’3+h~)+C’+P~ 
(8) 

This equation for c,, will be compared later with the 

existing experimental data on heat and mass transfer 
at completely rough walls covered with two-dimen- 
sional roughness. 

The numerical parameters k, by, hi and C’ entering 

into equations (7) and (8) theoretically may depend 

upon the shape and distribution of roughness ridges, 
i.e. on the parameters cl, g2,. . . In particular, it seems 

natural to expect that the exponent k would depend 
on the ratio p/h describing the density of roughness 
ridges and would decrease with increase of p/h. The 
results of the next section show, however, that for 
many different types of two-dimensional roughness 
(characterized by markedly different values of p/h) a 
satisfactory agreement with available experimental 
data may be achieved when the single collection of 
values of k, by, b; and C’ is used. This circumstance 

(which, of course, may become incorrect, if the class 
of the considered rough surface is expanded, the 
accuracy of the experimental results is increased or 
stronger requirements to the agreement of experiments 
with a theory are used) considerably simplifies the 
practical application of the recommended heat- and 
mass-transfer law. 

3. COMPARISON WITH EXPERIMENTS 

The comparison of equation (8) with available data 
on turbulent heat and mass transfer at walls with two- 
dimensional roughness is possible only when the 
numerical parameters k, b’;, b’; and C’ are determined. 
The most simple, though rather crude and indirect, 
method of determining the values of the above par- 
ameters is based on the treatment of experimental 
data on the coefficient ch. The data at very high Pr 

numbers are essentially valuable in this respect, because 
at Pr >> 1 the term proportional to Pr2/3 is the most 
important in the denominator of the RHS of equation 
(8). The formula for ch can therefore be approximately 
rewritten in a more simple form 

ch 2 (b;)~‘h+kPr-2’3(Cf/2)“2 (9) 

with only two unknown parameters k and by. Recently, 
Dawson and Trass [ 141 have measured electrochemical 
mass transfer between a metal solid wall with two- 
dimensional roughness and turbulent flow of an elec- 
trolyte flowing along the wall. They have obtained in 
these experiments the values of ch for Pr between 390 

and 4590. According to the data of Dawson and Trass 
the single value k = l/4 can be used as the first approxi- 
mation to k for all types of roughness considered in 
[14]. (The ratio p/h varied in the measurements by 

Dawson and Trass in the interval 3.6 d p/h < 7.5. but 

it will be seen later that the same approximate value 
of k has, in fact, still wider application.) Moreover, the 
same data allow approximate estimation of hi and the 

value of this coefficient also turns out to be rather 
insensitive to the replacement of one rough surface by 
another. Finally, Dawson and Trass’s data confirm 

excellently the correctness of the exponent at Pr in 
equations (7) and (8). If in these equations Pr2!3 is 
replaced by Pr3j4 (such a replacement corresponds to 

the assumption that s”(y) - y4. rather than &n(y) - y3, 
near a solid wall), then the data of [14] fail to correlate 
(8) whatever the values of k, b’;, b; and C’ are. 

When the values of k and h;’ are estimated based 

on heat- and mass-transfer data at Pr >> 1, the par- 
ameters b$ and C’ may be estimated approximately by 
the measurements of heat transfer through air (at 
Pr = 0.71). However, such an approach will not be 
used here, and even the values of k and hi will 
repeatedly be estimated below in another way. The 
case is that the knowledge of k, b’;, bz and C’ is, in fact, 

necessary only to find the equation for the coefficient 
c,,. Therefore it is very alluring to determine these values 

independently from any data directly related to heat 
and mass transfer and then to use the experimental 
values of c,, to control the parameters estimated above. 

The most direct method of determining the above 
parameters is based on the comparison of equation (7) 
with experimental values ofb derived from the measure- 

ments of the mean temperature and concentration 
distributions in rough-wall turbulent flows along a 
wall covered with two-dimensional roughness (and 

simultaneous measurements of turbulent fluxes allow- 
ing determination of (3,). Unfortunately the reliable 
experimental data of such a type remain very scanty 
and incomplete up to now. Among the known data 
only some of Chamberlain’s measurements [15] proved 
to be suitable for approximate determination of the 
coefficient b in the flow along a wall with two- 
dimensional roughness. In [15] the concentrations of 
water vapour (Pr = 0.62) and ThB radioactive vapour 
(Pr = 2.77) were measured in a number of turbulent 
air flows over rough walls of different kinds. Data of 
this paper include the values of u, and j, and of the 
dimensionless velocity and dimensionless concen- 
tration [&-Q(y)]/6* of water and ThB vapours at the 
point within the logarithmic layer (at the height 
y = 5cm over the wall). It is clear that these data 
allow easy determination of the experimental values 
pm of the constant 

/? = b+ctlnh+ = [f&0(y)]/@*-aln(y/h) (10) 

(cf. 161). 
Only those data of [15] are used in the present paper 

that are related to two-dimensional roughness (con- 
sisting of parallel cylinders, half-cylinders or wavelike 
ridges placed on a plate with p/h in the range 
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2 < p/h < 10). Additionally, the mass-transfer data of 
Owen and Thomson [ 131 for two-dimensional rough- 
ness are also used for the indirect estimation of 8. In 
[13] the vertical transport of camphor through an air 
boundary layer is studied (Pr = 3.2). The boundary 
layer is formed along two rough plates (the roughness 
of one of them being “two-dimensional”) sprinkled 
with camphor solution. There are no direct data on 
camphor concentration profiles in [ 131 but the authors 
suggest an indirect method of estimation of the dimen- 
sionless vertical concentration difference B-’ within 
the roughness sublayer. The obtained estimates of 
B-i within the roughness sublayer. The obtained esti; 
mates of B-’ imply approximate evaluation of fi 
(cf. [6]). As it is seen from .Fig. 1 all the estimates of 
/? obtained from the data of [13] and [15] for two- 
dimensional roughness are described with sufficient 
accuracy by the equation 

a = jI+alnh+ = 3.2h:/4(Pr213+0.3)+3.5. (11) 

75 

50 

ix 

25 
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25 

FIG. 1. Comparison of measured values /I,,, of#? = /3+a In h+ 
with calculated values PC. Dark and light symbols refer to 
the data of [ 151 for Pr = 0.62 and Pr = 2.77, respectively. 

No. Reference 
Range 
ofh, 

Type of 
roughness Pr 

1 Cl31 218-896 Two-dimensional 
roughness 3.2 

2 [I51 13-3740 Cylinders 0.62; 2.77 
3 Cl51 450-3390 Half-cylinders 0.62; 2.77 
4 1153 51-3230 Wavelike ridges 0.62; 2.77 

Equation (11) accurately fits general equation (7) and 
shows that k = l/4, b;’ = 3.2, bi = 0.3 and c’ = 3.5. 
Since at present there are no more reliable estimates, 
these values of k, by, b; and C’ are used throughout 
the present paper. Let us also remind that it has already 
been noted in [6] that the value of c’ should appar- 
ently be relatively close to the value of the constant 
B’ in the logarithmic velocity profile equation for a 
rough-wall flow: V(y)/u. = A ln(y/h) +B’. The above 
value 3.5 of c’ is substantially lower than the value 
c’ = 9.5suggested in [6] for a wall covered with closely 
spaced thr~~~ension~ roughness. This agrees with 

the fact that according to Nikuradse B’ = 8.5 in the 
logarithmic velocity profile equation for a wall covered 
with closely spaced three-dimensional homogeneous 
sand roughness (cf. [S], Section 5.4) while for a wall 
with two-dimensional roughness the same constant ET 
takes lower values in the range 3 d B < 8 (see [lo, 141). 

Let us now compare equation (8) with the values of 
k, b’;, b’; and c’ chosen according to (11) with the 
available data on heat and mass transfer at the wall 
covered with two-dimensional roughness. When the 
heat transfer in a boundary-layer flow on a flat plate 
is studied, it is reasonable to replace the boundary- 
layer thickness L in equation (8) by more easily 
measured distance x along the plate from the point of 
boundary-layer turbulization to the considered cross 
section of the layer. (In case of substantial roughness 
x may often be rather precisely identified with the 
distance from the leading edge of the plate.) Using the 
known relationship L = a(cf/2)“~“x where a = const 
(see, e.g. [8], Section 5.6) which holds for smooth and 
for rough plates, and assuming (in accordance with the 
smooth-wall data) that a = 0.3, we obtain, by substitu- 
tion of the above values of u, fll, k, b;, h’i and c’ in 
equation (8) and repla~ment of L by x, the following 
form of a heat-transfer law: 

c,, = 
(cs/2)“* 

( ) 

(12) 
2.121n i(c,i2)‘/* + 3.2h:‘4(Pr2’3 +0.3) + 3.5 

where h+ = (~~~/v)(c~/~)“‘. For heat transfer into the 
air (pr = 0.71) this law assumes particularly simple 
form : 

Nu, = c,,RexPr x 
Re,(cf/2)1i2 

3 In X(cf/2)liz 
( > 

(13) 

+5[(h+)1’4+1] 

Numerous experimental data on heat transfer be- 
tween a hot plate covered with two-dimensional rough- 
ness and air flow along the plate may be found in 
[16,17]. These data cover a wide range of shapes, 
area distributions and heights of roughness ridges. The 
authors of [l&17] measured (as it is usually done in 
boundary-layer heat-transfer studies) the mean velocity 
and temperature profiles for a number of boundary- 
layer cross sections along the plate, and then they 
calculated the values of cf and ch by an integral 
method. This method implies differentiation of the 
ex~rimental data over X, that leads to a ~nsiderable 
loss of accuracy. Perhaps this is exactly the explanation 
why the experimental values of Nu, numbers for a 
smooth plate obtained in [16] and plotted in Fig. 2 
are in poor agreement with the values calculated by 
the theoretical equation for Nu, derived in 151. Never- 
theless Fig. 2 shows that the agreement between the 
experimental values of Nu, and the values calculated 
with the aid of (13) proves to be more or less satis- 
factory for both rough plates studied in [16]. As to 
the data of [17] they may be compared more reliably 
with the results implied by equation (13). The reason 
is that in [17] a table is given of the measured values 
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FIG. 2. Nu, as a function of Rex according to data of [16] 
(dotted Iines) and according to proposed theoretical equation 
(solid 1ines)at Pr = 0.71 for smooth(i) and two rough plates: 
(2) plate with h = 3mm (h+ ranging from 393 to 570) and 
p/h = 4.16; (3) plate with h = 1.7mm (h+ ranging from 256 

to 303) and p/h = 7.35. 

of the enthalpy thickness of the boundary layer 

with two-dimensional roughness. We must take into 
account, however, that ail the experimental data on 
heat and mass transfer in turbulent pipe flows concern 
the heat (or mass) transfer coefficient related to the 
bulk velocity Lib and the bulk temperature (or concen- 
tration) Bh and not to the axial velocity U1 and the 
axial temperature (or concentration) fll. The ise of Uh 
instead of U1 changes nothing in our considerations 
since the velocity scale U may be chosen arbitrarily 
in the derivation of equation (4) for ch (provided the 
same scale U is used in dimensionless combinations 
ch, cs and Ref. Hence we can simply replace U1 by Ub 
in ail the equations defining ch, cf and Re. However 
the use of H1 (i.e. of the difference b),-(ll and not of 
0, - 0,) is essential to the derivation of (4), and therefore 
the replacement of 8, = n(L) by the bulk value 

in the definition of the heat- (or mass-) transfer coef- 
ficient requires insertion of an additional factor 
A-’ = (B,-f~l)/(fl,,,-Ob) in the equation for Ch. An 
approximate estimation of this factor for rough pipes 
is considered in detail in [6] and we shall not dwell 
upon it here. The use of the equation for A-’ derived 
in [6] and of the above values of 1, /& k, h’{, h’i and C 
implies the following transformation of (8) 

Ch =: .lw (‘.&/2)‘:z 

c~~~~(~~-~~) = 
3.2h :‘4(P~2!3 

3.2 
+0.3)-2.12lnq,+4------;- 

(i-ad- 
+ 6.7(cf/2)“’ 

(14) 

where cI = 2(uJU#, q = h/L. In case of heat transfer into air (Pr = 0.71) the latter equation will take the form 

NM = C,,RePr z 
Re(cJ/2p2 

4.5 
%z’+‘~ - 3 in q1 + 5.6 - o7 + 9..5(~f/2)‘!~ 

t 

(15) 

and of the energy thickness 

at different x (beginning from x = 200mm). If we cal- 
culate the distribution of ch along the plate by equation 
(13) and use the measured values of cf = cf(x) (given 
in [17}), we may then determine A*(x) with the aid of 
integral relation 

and compare these values with the measured values of 
AZ(X). The use of integration instead of differentiation 
over x makes this comparison more reliable than the 
one whose results are presented in Fig. 2. The data 
in Fig. 3 show quite a satisfactory agreement between 
measured and predicted values of AZ related to the 
experiments described in [ 171. 

Now we shall compare the results of calculation 
with the aid of (8) with the data available on heat and 
mass transfer in pines and channels with wails covered 

We must also take into consideration that equations 
(14) and (15) refer only to pipes with a completely 
rough wail. However, two-dimensional roughness 
differs from closely spaced three-dimensional rough- 
ness by earlier transition to a completely rough flow. 
It is known that the wail covered with sand or similar 
three-dimensional roughness can be considered 
dynamically completely rough only at h+ = huJv 
exceeding the “threshold” value h’,o) where h’+O) s 100. 
At the same time the friction data of [IO, 141 show that 
for two-Dimensions roughness the skjn-friction coef- 
ficient c, assumes a constant value (i.e. the wall is com- 
pletely rough) even when h+ is between 25 and 35. As 
to the heat and mass transfer, transition to “com- 
pletely rough flow” described by equation (14) pro- 
ceeds apparently still earlier (i.e. at lower values of h+). 
This fact is clearly seen in the graphs representing 
Dawson and Trass’s data [14] on mass transfer at a 
rough wail for very large Pr (Figs. 10-16): most of 
them show a sharp change of the slope in the Nu vs Re 

curve at relatively low values of h+ (most frequently 
close to 10) and above this bend point equation (14) 
turns to be applicable with quite a satisfactory accu- 
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3- 

2- 

I- 
/: 

O- 
I: 

E o- 
I 

a” 

O- 
5 

O- 

I 

O- 
> 

o- 

x, mm 

FIG. 3. AZ vs x for six rough plates according 
to data of [17] (points) and according to 
calculations (solid lines). Pr = 0.71; six zeros 
on the ordinate axis show the origin of values 

for six curves. 

No. 
h 

(mm) Range of h+ Plh 

1 3 307-540 2.65 
2 3 3633583 3.30 
3 1.9 263-320 4.21 
4 2.4 318-465 4.13 
5 4 538-840 4.18 
6 4 563-825 4.18 

racy. Since the main variation of the temperature (or 
concentration) takes place at large Pr in a very thin 
wall-adjacent layer, whose thickness decreases with 
increase of Pr, it may be supposed that the equation 
for b(Pr, h+) describing a “completely rough flow” may 
be generally applied beginning from the “threshold 
value” h+ = h’,O), where h’+O) depends on Pr and de- 
creases with increasing Pr. At present, however, there 
are no data that would allow a detailed study of the 
problem on the boundary between a “completely 
rough flow conditions” and “transitional flow condi- 
tions” and on the heat- (or mass-) transfer properties 
of such “transitional flows”. Therefore we shall simply 
take into account that if the true roughness height h 
(that does not consider the possibility of a great differ- 
ence in shapes of roughness elements) is replaced by 
the height h, of equivalent (i.e. causing the same 
friction at rather large Re sand roughness), then the 
bend in the Dawson and Trass’s curves Nu = Nu(Re) 

in all cases takes place at h,+ = h,uJv close to 25. 
Since for all other experimental data analysed in this 
paper the value of h!o,’ = 25 also turns out to be a 
reasonable estimate of the “threshold value” of h+ 
controlling the transition to “completely rough flow 
conditions”, equations (14) and (15) will be applied 

to h,+ = 25 is shown with a vertical dotted line in all 
of the following figures. For the measurements at 
h,+ < 25 the simplest method of linear interpolation is 
used which is based on the replacement of fi(Pr, h+) 

in equation (4) for c,, by the following interpolation 
value 

Here bs is given by equation (5) while /?, is given by (7) 
with k = l/4, by = 3.2, b; = 0.3 and c’ = 3.5 (cf. a 
similar reasoning in [6] where it is, however, assumed 
that h!y = 100). Transition from ch to C,, upon deter- 
mination of j and in the case of transitional flow re- 
quires only insertion of an additional factor A-’ 
(whose value is given in [6]) into the equation for a 
heat- and mass-transfer coefficient. 

Figure 4 shows that equation (15) describes quite 
satisfactorily (and much better than the equation for 
C,, suggested in [6]) Nunner’s experimental data [9] 
for pipes with walls roughened by removable circum- 
ferential rings of different shapes. Let us note, however, 
that in the case of heat transfer into the air satisfactory 
agreement with experimental data can also be achieved 
based on some theoretical models quite different from 
the one used in the present work (cf. e.g. the models 

FIG. 4. kNu (where factor k is included in order to avoid 
overlapping of data points) vs Re according to data*of [9] 
at Pr = 0.71. Solid lines for rough pipes represent calcu- 

lations with the aid of equation (15) 

No. 
Range of Range of 

h+ h S+ dh k 

1 0 0 0 1 
2 0.182 26.4-701 18.3-486 13.5 2 
3 0.167 44.8-l 157 189-4883 6.2 4 
4 0.164 42.0-1210 239-6900 5.7 8 
5 0.162 34.0-1046 137-4213 7.0 16 
6 0.0805 14.9402 69.91890 6.2 32 
7 0.0805 12.2-316 38.6-1003 7.3 64 

only at h s+ 3 25. The Reynolds number corresponding 
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of Galin [18] and Migai [19] who supposed that the 
structure of the viscous sublayer in the gaps between 
the ridges of closely spaced two-dimensional roughness 
does not differ considerably from that on a smooth 
wall). Nevertheless, it seems that in the case of heat 
transfer into the air the above equation (15) also leads 
to somewhat better agreement with experimental data 
than all of the equations for Ch suggested in the 

literature we have seen. However, only the comparison 
of the above equation with experimental data covering 
a wide range of Pr numbers and a great number of 

roughnesses of different types may provide a decisive 
verification of this equation. 

In this respect the references [20-221 are of con- 
siderable interest. These works describe the results of 
a study of heat transfer in pipes with two-dimensional 

roughness of a special kind, namely. with transverse 
annular protrusions made by pressing the pipe wall 
from the outside with a special roll. Engineering 
advantages of utilizing such a roughness to enhance 

heat transfer are discussed in detail in book [l]. The 
results of [20-221 refer to a series of Prandtl numbers, 
since the data include the heat-transfer coefficients for 

air [20], water [21]. and pure water and aqueous 
glycerine solution [22] flows. The comparison of the 
measured Nu numbers with the values calculated by 
(14) [or with similar equation for transitional flows 
based on relation (16)] is shown in Figs. 5-7. In 
calculation of the Nu numbers in Figs. 6 and 7, tem- 
perature dependent Prandtl numbers for water and 
glycerine solutions were taken for the mean tempera- 

Re 

IOJ 

0-I 

o-2 
A-3 

o-4 

v-5 

i 

FIG. 5. kNu vs Re according to data of [20]. Pr = 0.71: 
solid lines correspond to equation (15). 

No. VI 
Range of 

h+ 
Range of 

h,+ plh k 

1 0.119 181-753 18.0-75.0 2.5 1 
2 0.04 46.9-328 270-1886 8.4 2 
3 0.04 47.5-333 286-2002 12.0 4 
4 0.04 38.7-271 107-748 16.7 8 
5 0.04 29.7-208 16.5-l 16 33.3 16 

A. M. YAGLOM 

Re 

FIG. 6. kNu vs Re, and Nu vs Pr at Re = 1.3. lo4 (insertion at 
the lower right corner) according to data of [21]. Solid lines 
are calculated with the aid of proposed theoretical equation. 

Range of Range of 

No. VI h+ h,+ P/k Pr k 

I o-095 81.2-172 512-1083 10.6 9.8 I 
2 0.095 827-158 42&8 I6 15.6 8.7 & 2.3-9 I 2&I 
3 0.095 80.3-216 351-943 20.5 6.5 4 
4 0.050 216-1034 916 4377 20 5 31 I 

100 200 500 

NW33 

FIG. 7. Comparison ofmeasured values Nu, with calculated 
values Nu, for the data of [22]. 

Range of Range of 
No. ‘II h+ h S+ Plh Pr 

1 0 0 0 - 10-43 
2 0.078 42.6-339 106-842 30 3-28 
3 0.054 12.1-123 4.5-46.0 37 4-21 
4 0.034 7.6-91.5 5.2-79.7 13 2-32 
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ture &, = (Qt-6b)/2. To plot together all the data of 
Kalinin and Yarkho [22] for a wide range of Pr 
numbers in Fig. 7, the “comparison chart” was used 
with measured Nu, values on the abscissa and cal- 
culated Nu, numbers on the ordinate. In Figs. 6 and 7 
the scatter of points indicates somewhat worse agree- 
ment between measured and calculated NU numbers 
than in the case of heat transfer through air. This fact 
may, in particular, be attributed to disregard of non- 
uniform temperature distribution over roughness 
ridges which is apparently of importance for water 
and aqueous solution flows along a rough wall. Never- 
theless even in cases shown in Figs. 6 and 7 the 
agreement between the measurements and calculations 
is rather satisfactory from an engineering point of view. 

The related two-dimensional “repeated-rib” rough- 
ness consisting of annular protrusions of rectangular 
profile was used by Webb, Eckert and Goldstein [lo] 
who studied heat transfer between pipe walls and 
turbulent flow of air, water or butyl alcohol (at 0.7 < 
Pr < 37). Figure 8 shows that in this case, too, experi- 

104 104 10% 

Re Re 

FIG. 8. kNu vs Re according to data of [lo]. Solid lines are 
calculated with the aid of proposed theoretical equation. 

1 2 3 4 
Pr 0.71 4.9 20.9 35 
-~~ 

(a) h+ 0 0 0 0 
v,=O k+ 0 0 0 0 

W h+ 7.0-l 19 7.8-97.6 11.1-52.8 6.6-42.5 
7, = 0.02 ha+ 43.9-748 49.k.616 69.8-333 41.4-268 
p/h = 10 

w h+ 17.6-303 22.0-150 18.4-234 18.2-110 
‘I, = 0.04 h.+ 154-2641 191-1308 16%2040 158-955 

pJh = 10 

W h+ 41.7-858 48.9-587 48.9-587 - 
q, = 0.08 hs+ 429-7709 439-5271 439-5271 - 

p/h = IO 

(e) h+ 15.9-279 17.8-234 15.0-218 _ 

0, = 0.04 k+ 83.9-1476 94.1-1238 79.61153 - 
p/h = 20 

(f) h* 13.9-268 14.5-108 11.8-163 11.6-77.0 
q> = 0.04 h,+ 28.0-542 29.3-219 23.9-329 23.5-156 

p/h = 40 

mental data agree satisfactorily with calculations based 
on equations suggested in the present paper. 

It has already been noted that high Prandtl numbers 
in Dawson and Trass’s studies [14] are of special 
interest. These authors have electrochemically 
measured mass transfer at a rough (and, to compare 
with, at a smooth) upper wall of a rectangular channel 
at very high Pr numbers (390 Q Pr < 4585). A series 
of rough surfaces with geometrically similar two- 
dimensional protrusions of different height have been 
used in this study and in addition to the mass-transfer 
coefficient c* the skin friction coefficient cs has also 
been measured. When analysing Dawson and Trass’s 
data it should be remembered that, strictly speaking, 
equation (14) derived for a circular pipe flow is not 
applicable to the flow in a rectangular channel with 
only one rough wall. However, at very large Prandtl 
numbers the mean con~ntration 8(p) changes sharply 
in a very thin layer adjacent to the wall, and then 
remains almost constant. Therefore Bb in Dawson and 
Trass’s experiments does not practically differ from the 
maximum concentration e1 at the channel center 
(though both et, and @i differ greatly from 0,). Hence, 
the correcting factor A-’ = (~~-e~)/(e~-e*) is very 
close to unity and its deviation from the value of Ah-’ 
(that is also very close to unity) in case of a circular 
pipe flow at the same Pr is of no real significance. In 
other words, inaccuracy of equation (14) in case of a 
rectangular channel flow due to the use of the factor 
A-l calculated for a circular pipe appears to be quite 
negligible at Pr > 390. A crude estimate of a possible 
order of the magnitude of the corresponding error 
shows that this error lies far beyond the limits of 
accuracy of the calculation method recommended in 
the present paper. Therefore in Figs. 9-16 the data of 
[14] are compared with the calculations by (14) and 
(16). This comparison shows that agreement between 
the measured and calculated values, both for a smooth 
wall and for all completely rough walls, proves to be 
quite satisfactory according to Dawson and Trass’s 
data. Let us note that a good agreement in a smooth- 
wall case is of special interest since it demonstrates 
most clearly the correctness of the exponent at Pr in 
the equation for j3. As far as transitional flows along 
a slightly rough wall are considered, the agreement 
seems to be more poor in a number of cases, which 
apparently indicates insufficient accuracy of a fixed 
“threshold value” hi’$ = 25 and of the simplest linear 
interpolation between smooth and completely rough 
wall flows. 

Figures 2-16 show that the method of calculations 
suggested in the present paper allows prediction, with 
a satisfactory accuracy, of the values of heat- and mass- 
transfer coefficients for a great variety of turbulent 
flows along the walls covered with different two- 
dimensional roughness. In particular, the method 
proves to be applicable within a wide range of p/h 
values (from p/h x 4 to p/h x 40), Re (from 3. lo3 to 
2. lo’), Pr (from 0.7 to 4585) and h+ (from 10 to 4000). 
It should also be emphasized that the results of the 
paper imply that the effect of roughness plays the 
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FE. X5. The same as in Fig. 10, but according to data for 
plate R6 (ql = 0.008; p/h = 3.75). 

No. Pr 
Range of Range of 

ht h f+ k 

: 
393 
464 

3 556 
4 670 
5 814 
6 1004 
7 1246 
8 1847 
9 2858 

10 458.5 

30.1-2.2 46.9-3.4 
27.9-2.0 43.5-3.2 
25.7-1.9 40.0-2.9 
23.6-1.7 36.8-2.7 
21.6-1.6 33.7-2.4 
19.6-1.6 30.5-2.4 
17.7-1.4 27.62.2 
14.61.2 22.7-1.8 
11.7-0.9 18.3-1.4 
9.3-5.7 14.4-1.1 

:. 
4 
8 

16 
32 
64 

128 
256 
512 

doubb role in heat and mass transfer. On the one 
hand, disturbances produced by roughness ridges in- 
tensify heat and mass transfer; on the ather, flow 
deceleration in the gaps between ridges deteriorates 
heat and mass transfer. The second effect is especially 
pronounced at large Pr and Re values and it can even 
make the rate of beat and mass transfer from a rough 
wall lower than that from a smooth wall at the same 
Pr and Re numbers. It is clear that at very large Pr 
and Re numbers the first term in the denominator of 
the RHS of (15) is dominating, and thus (c& - 
Re-“‘4Pr-2f3 (because cf = const and h+ -u Re), while 
for a smooth wall the first term of equation (5) for p is 
dominating and therefore (c& - (c#~~P~-~!‘. Hence 
it follows that (c& * Re-i~8Pr-2~3, (QJ,/(~~)~ - Rem”* 
if the known Blasius friction law is valid. The latter 
result is close to the experimental result of Dawson 
and Trass [14] [according to these authors (c&/(c& - 
Sk-‘.” at large Pr and large enough Re]. 

iO4 

Re 

FIG. 16. The same as in Fig. 10, but according to data for 
plate R8 (q, = 0.008; p/h = 7.5). 

NO. Pr 
Range of Range of 

h+ k 5+ k 

1 556 27.1-2.1 X0-4.6 8 
2 670 24.9-2.0 53.3-4.2 16 
3 814 22.8-1.8 48.7-3.8 32 
4 1004 20.6-1.6 44.2-3.5 64 
5 1246 18.7-1.5 40.0-3.2 128 
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TRANSFERT TURBULENT DE MASSE ET DE CHALEUR SUR UNE PAR01 
RUGUEUSE A SILLONS PARALLELES 

Rirsume-On sait que l’tquation gbntrale du coefficient de transfert thermique et massique entre une 
paroi rugueuse et un fluide en Ccoulement turbulent peut &re obtenue a l’aide de considerations gtnerales 
de dimension et de similitude auxquelles s’ajoutent quelques arguments physiques. L’tquation est don& 
ici dam le cas dune paroi recouverte dune rugosite bidimensionnelle faite da&es paralltles, largement 
espac+.es et perpendiculaires a la direction de l’ecoulement. Les coefficients constants de l’irquation sont 
estimes a partir des don&es disponibles sur les profils moyens de temperature ou de concentration, pour 
les tcoulement$ turbulents sur paroi a rugositt bidimensionnelle. Les resultats du calcul s’accordent avec 
toutes les experiences sur le transfert turbulent de chaleur et de masse dam les tuyaux et les canaux 
avec des sillons paralleles et rtgulibrement espads, ainsi que pour les plaques ayant ce type de rugositt. 

TURBULENTER WARME- UND STOFFUBERGANG AN EINER 
WAND MIT PARALLELEN RAUHIGKEITSERHEBUNGEN 

Zusammenfassung-Bekanntlich kann die allgemeine Gleichung fiir den Warme (Staff)-Ubergang zwischen 
einer rauhen Wand und einer turbulenten Fluidstromung mit Hilfe von Dimensions- und Aehnlichkeits- 
betrachtungen unter Zuhilfenahme einiger zusatzlicher physikalischer Parameter hergeleitet werden. Fiir 
den speziellen Fall einer Wand, die mit zweidimensionalen Rauhigkeiten in der Form paralleler, weit 
voneinander entfernter Erhebungen, welche im rechten Winkel zur Striimungsrichtung verlaufen, wird 
diese Gleichung hier abgeleitet. Aus den vorhandenen Daten der mittleren Temperatur-oder Konzen- 
trationsprofile in wandturbulenten Strlimungen iiber zweidimensionale Rauhigkeiten werden die 
Konstanten der Gleichung angeniihert ermittelt. Die Rechenergebnisse stimmen befriedigend tiberein 
mit allen experimentellen Daten des turbulenten WLrme- und Stoffiibergangs in Rohren und Kaniilen 
mit regelmlssig, sich wiederholenden parallelen Rauhigkeiten, sowie an Platten mit zweidimensionalen 

Rauhigkeiten derselben Form. 

TYPEYJIEHTHbIti TEI-IJ-IO- ki MACCOITEPEHOC OT CTEHKH, 
I-IOKPbITOfi I-IAPMJIEJIbHbIMH TPEEHIIMM IIJEPOXOBATOCTM 

Antroraunn- 06lrran @ophryna anrr Ko3&&ixv?errra T~IIJIO- mm MacconepeHoca OT mepoxosaroti 
CTeHKliK Typ6yrreHrnoMyreuenmonuimcocTFr, BMTeKaIOlIUUIA3aHNlH3apa3MepIiOCTdiHlieKOTOpbIX 

LIOnOJIHWTeJIbHbIX coo6parrerrrrrt @i3H¶eCXOrO XapaK%pa,KOHK~Si3EpyeTCSl B IQNiMeHeHEB K Cny- 

48KJ CTeHKE,nOKpbITOiiAEiyM~HOiiIUepOXOBaTOCTbEOBBHJIeCpaBHWlWb HopejqzixnapaJLileJIb~ 

rpe6Hel,nepneiinalcynnp~xrranpaaneHEnocpermeftc~oPOCTH.3IIaYeIIHIInOCToRfMhIxKo~~eE- 

TOB, ~xoAnIuHx B npemmraehiyro @op~yny, npn6mnuenno ouemmam TCR Ha oc110Be memmixca 
mwblx 0 npo&inm cpemieti TehinepaTypbI si.m~ Kowemaumi B np~c~emns~ Typ6yneHTHbrX 

Teqeminx Han clemcoti c msyhfepHoil mepoxoaaTocTbm. llonynemwe pe3ynbTaTbI n0380m~ c 

yJlOBiWTBOpHTeJlbHOti TO'UiOCTblO OllHcBTb MHOrO'5WleHHbIe EnMepemiSl Typ6yJleHTTiOrOTelUIO-Ii 

MaCCOnepeHOCa B rpy6ax H KaHaJIaX CO CTeAKaMH, IIOIC~~IT~IMH rp&UlME JIl~OXOBaTOCTEi, H HB 

nnacTmiKaxcTaKoroxce~namepoxoeaTocTwo,o6TeKaewxTyp6yneHTm.~M IIOTOKOM. 


